Pr. Mohamed EL Nashie

Pr. Mohamed EL Nashie

Abstract: The main fundamental conclusion is the following: 1. Dark energy is the energy of the quantum wave. 2. Ordinary energy is the energy of the quantum particle. 3. Dark energy being the energy of the quantum wave cannot be measured in the ordinary way because measurement causes a state vector reduction i.e. a wave collapse. This conclusion could be made more specific as following: 1. Einstein’s energy consists really of two parts when we take quantum mechanics on board. The normal position energy or potential energy is the energy of the quantum particle. Its magnitude is equal to the multiplication of the mass times the squared velocity of light with Hardy’s Quantum Entanglement divided by 2. This comes to approximately Einstein’s famous energy formula divided by 22. 2. The Kinetic Energy on the other hand is associated in quantum mechanics with the only thing which propagates namely the quantum wave. It turned out that this quantum kinetic energy of the wave is equal to 5 copies of Einstein’s famous energy formula multiplied by the Hausdorff dimension of the empty set i.e. the golden mean to the power of 2 and divided by 2. This comes approximately to Einstein’s famous formula multiplied by (21/22). This is about 95.5% of Einstein’s energy and agrees completely with the measurement of the three 2011 Nobel Laureates in Physics, Perlmutter, Schmidt and Reiss. 3. A Schrodinger equation which describes the entire universe is the Wheeler-DeWitt equation. The solution of this equation is the Harking-Hartle quantum wave of the cosmos. In other words, cosmic measurements must collapse this wave. That is why we cannot find the energy of the quantum wave of the cosmos. This is nothing else but the dark energy which has a negative sign and produces an anticlastic curvature which means anti-gravity causing accelerated rate of expansion. 4. The only hope for detecting the dark energy of the wave is a non-demolition measuring instrument. There is a whole field of research in this direction but nothing is conclusive. Should we have something like that, then we could produce an atomic reactor which is 2200% more powerful than any fission or fusion reactor.
Biography: Professor M.S. El Naschie, born 1943 in Cairo, Egypt. He received his entire education in West Germany (Hamburg and Hannover) and later on in England where he obtained his Ph.D. from the University College, London – U.K.. He is a fellow of the Institute of Physics, England. He was honored by the bestowal of the title of a Distinguished Fellow by the Association for the Advancement of Fundamental Scientific Research at the Institute of Physics of the Johann Wolfgang Goethe University, Frankfurt, Germany. He is a visiting Professor in numerous Universities including University of Cairo, University of Alexandria (Dept. of Physics), Egypt. He was the advisor of the Egyptian Ministry for Science and Technology (High Energy Physics and Nanotechnology). He is Honorary Professor in Shanghai`s Jiao Tong University as well as the Donghua University in the People` Republic of China. He was the principle advisor of the Ministry of Science and Technology of the Kingdom of Saudi Arabia (KACST – Riyadh) since many years. Professor El Naschie was trained initially as an engineer and worked extensively in Structural Engineering and Applied Mechanics. After becoming full Professor of Engineering he followed his inclination towards theoretical subjects and moved first towards Applied Mathematics and later on Nuclear and High Energy Physics. His research interests include: Stability, Bifurcation, Atomic-engineering, Nonlinear Dynamics, Chaos, Fractals, High Energy Particle Physics, Quantum Mechanics and E-infinity theory. He is editor-in-chief and associate editor of numerous learned journals.